An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects
نویسندگان
چکیده
This paper presents a fully three-dimensional constitutive model for anisotropic viscoelasticity suitable for the macroscopic description of fibre reinforced composites that experience finite strains. An essential feature of the model is that the matrix and the fibres are treated separately allowing then as many bundles of fibres as desired. Moreover, the relaxation and/or creep response is based on the multiplicative viscoelastic split of the deformation gradient combined with the assumption of viscoelastic potentials for each compound. Here the composite is thought to be the superposition of an isotropic matrix material and further one-dimensional continua, each of them representing one family of fibres. The deformation gradient and its multiplicative decomposition apply to all the continua linking them implicitly. The global anisotropic response is obtained by an assembly of all the contributions. Constitutive models for orthotropic and transversely isotropic materials are included as special cases. It is shown how the continuum thermodynamics is crucial in setting the correct forms for the constitutive and evolution equations. For the algorithmic design within the context of the finite element method, the numerical effort is of the order of that devoted for isotropic computations. In fact, only a single scalarvalued resolution procedure is added for each fibre bundle. The algorithmic tangent moduli are derived for each compound and their assembly leads to consistent viscoelastic tangent modulus which is suitable for a quadratic rate of convergence when the Newton-Raphson iterative scheme is employed. The numerical efficiency of the model is illustrated through a set of representative simulations.
منابع مشابه
Deformation Characteristics of Composite Structures
The composites provide design flexibility because many of them can be moulded into complex shapes. The carbon fibre-reinforced epoxy composites exhibit excellent fatigue tolerance and high specific strength and stiffness which have led to numerous advanced applications ranging from the military and civil aircraft structures to the consumer products. However, the modelling of the beams undergoin...
متن کاملDifferential Quadrature Method for Dynamic Buckling of Graphene Sheet Coupled by a Viscoelastic Medium Using Neperian Frequency Based on Nonlocal Elasticity Theory
In the present study, the dynamic buckling of the graphene sheet coupled by a viscoelastic matrix was studied. In light of the simplicity of Eringen's non-local continuum theory to considering the nanoscale influences, this theory was employed. Equations of motion and boundary conditions were obtained using Mindlin plate theory by taking nonlinear strains of von Kármán and Hamilton's principle ...
متن کاملA time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices
In this work, a fully three-dimensional constitutive model suitable for the macroscopic description of unidirectional fibre-reinforced composites where the matrix exhibits a time-dependent viscoelastic behaviour is developed. Specifically, we consider a coordinate-free formulation where the stress and strain fields can be decomposed into fibre-directional and volumetric parts on the one hand, a...
متن کاملComparison of viscoelastic finite element models for laminated glass beams
Laminated glass elements, which consist of stiff elastic glass layers connected with a compliant viscoelastic polymer foil, exhibit geometrically non-linear and time/temperature-sensitive behavior. In computational modeling, the viscoelastic effects are often neglected or a detailed continuum formulation typically based on the volumetric-deviatoric elastic-viscoelastic split is used for the int...
متن کاملDuctile Damage Evolution under Triaxial Stress Conditions: Computational and Experimental Evaluations
The continuum mechanic simulation of micro-structural damage process is important in the study of ductile fracture mechanics. In this paper, the continuum damage mechanics model formulation proposed by Lematire has been validated against ductile damage evolution experimentally measured in A533B-C1 steel under stress triaxiality conditions. First, a 
procedure to identify the model parameters...
متن کامل